1.
Belibasakis GN, Charalampakis G, Bostanci N, Stadlinger B. Peri-implant infections of oral biofilm etiology. Adv Exp Med Biol. 2015;830: 69-84. doi:10.1007/978-3-319-11038-7_4
2.
Weidlich P, Lopes De Souza MA, Oppermann RV. Evaluation of the dentogingival area during early plaque formation. J Periodontol. 2001; 72(7):901-910. doi:10.1902/jop.2001.72.7.901
3.
Löe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36(3):177-187. doi: 10.1902/jop.1965.36.3.177
4.
Yamamoto SL. Periodontal disease: symptoms, treatment, and prevention. Hauppauge, NY: Nova Science Publishers. 2010.
5.
Maqbool R, Hussain MU. MicroRNAs and human diseases: diagnostic and therapeutic potential. Cell Tissue Res. 2014;358(1):1-15. doi:10.1007/s00441-013-1787-3
6.
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014; 42(Database issue):D68-D73. doi:10.1093/nar/gkt1181
7.
García-Giménez JL, Seco-Cervera M, Tollefsbol TO, et al. Epigenetic biomarkers: current strategies and future challenges for their use in the clinical laboratory. Crit Res Clin Lab Sci. 2017;54(7-8):529-550. doi:10.1080/10408363.2017.1410520
8.
O'Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402
9.
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis.Periodontol 2000. 2015;69(1):7-17. doi:10.1111/prd.12104
10.
Park MG, Kim JS, Park SY, et al. microRNA-27 promotes the differentiation of odontoblastic cell by targeting APC and activating Wnt/β-catenin signaling. Gene. 2014;538(2):266-272. doi:10.1016/j.gene. 2014.01.045
11.
Nahid MA, Rivera M, Lucas A, et al. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE−/− mice during experimental periodontal disease. Infect Immun. 2011;79(4):1597-1605. doi:10.1128/IAI.01062-10
12.
Zhu L, Xu H, Lv W, et al. miR-199b-5p regulates immune-mediated allograft rejection after lung transplantation through the GSK3β and NF-κB pathways. Inflammation. 2018;41(4):1524-1535. doi:10.1007/s10753-018-0799-2
13.
Motedayyen, H, Ghotloo S, Saffari M, et al. Evaluation of MicroRNA-146a and its targets in gingival tissues of patients with chronic periodontitis. J Periodontol. 2015;86(12):1380-1385. doi:10.1902/jop. 2015.150319
14.
Wang Q, Ye B, Wang P, et al. Overview of microRNA-199a regulation in cancer.Cancer Manag Res. 2019;10;11:10327-10335. doi:10.2147/CMAR.S231971
15.
Jiang Q, Huang Yu W, Huang R, et al. mTOR signaling in the regulation of CD4+ T cell subsets in periodontal diseases. Front Immunol. 2022;13: 827461. doi:10.3389/fimmu.2022.827461
16.
Kim YC, Guan K L. mTOR: a pharmacologic target for autophagy regulation. J Clin Iinvest. 2015;125(1):25-32. doi:10.1172/JCI73939
17.
Deleyto-Seldas N, Efeyan A. The mTOR-autophagy axis and the control of metabolism. Front Cell Dev Biol. 2020;9:655731. doi:10.3389/fcell. 2021.655731
18.
Chen R, Alvero AB, Silasi DA, et al. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene. 2008; 27(34):4712-4723. doi:10.1038/onc.2008.112
19.
Lu H, Yang Y, Ou S, et al. The silencing of miR-199a-5p protects the articular cartilage through MAPK4 in osteoarthritis. Ann Transl Med. 2022;10(10):601. doi:10.21037/atm-22-2057
20.
Garabet L, Rangber A, Eriksson AM, et al. MicroRNA-199a-5p may be a diagnostic biomarker of primary ITP. Br J Haematol. 2025;206(5):1443-1449. doi:10.1111/bjh.19987
21.
Zhao DY, Zho L, Yin TF, et al. Circulating miR-627-5p and miR-199a-5p are promising diagnostic biomarkers of colorectal neoplasia. World J Clin Cases. 2022;10(16):5165-5184. doi:10.12998/wjcc.v10.i16.5165
22.
Almiñana-Pastor PJ, Boronat-Catalá M, Micó-Martinez P, et al. Epigenetics and periodontics: a systematic review.Med Oral Patol Oral Cir Bucal.2019;24(5):e659-e672. doi:10.4317/medoral.23008
23.
De Souza AP, Planello AC, Marques MR, et al. High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis.Clin Epigenetics.2014;6(1):15. doi:10.1186/1868-7083-6-15
24.
Li H, Deng Y, Sun K, et al. Structural basis of kindlin-mediated integrin recognition and activation.Proc Natl Acad Sci USA. 2017;114(35): 93499354. doi:10.1073/pnas.1703064114
25.
Chapple ILC, Mealey BL, Van Dyke TE, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):S74-S84. doi:10.1002/JPER.17-0719
26.
Silness J, Löe H. Periodontal disease in pregnancy. II. correlation between oral hygiene and periodontal condition. Acta Odontol Scand. 1964;22(1):121-135. doi:10.3109/00016356408993968
27.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-408. doi:10.1006/meth.2001.1262
28.
Kim SH, Lee SY, Lee YM, et al. MicroRNAs as biomarkers for dental diseases.Singapore Dent J.2015;36:18-22. doi:10.1016/j.sdj.2015.09.001
29.
García-Giménez J, Sanchis-Gomar F, Lippi G, et al. Epigenetic biomarkers: a new perspective in laboratory diagnostics.Clin Chim Acta. 2012;413(19-20):1576-1582. doi:10.1016/j.cca.2012.05.0
30.
Irwandi RA, Vacharaksa A. The role of microRNA in periodontal tissue: a review of the literature. Arch Oral Biol. 2016;72:66-74. doi:10.1016/j.archoralbio.2016.08.014
31.
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. doi:10.1101/cshperspect.a001651
32.
Barut Z, Akdeniz FT, Avsar O, Cabbar AT. Investigation of miRNA-199a-5p expression and its clinical association with LDL cholesterol levels in atherosclerosis. In Vivo. 2024;38(6):2656-2664. doi:10.21873/invivo.13742
33.
Dolz S, Górriz D, Tembl JI, et al. Circulating microRNAs as novel biomarkers of stenosis progression in asymptomatic carotid stenosis. Storke. 2017;48(1):10-16. doi:10.1161/STROKEAHA.116.013650
34.
Almiñana-Pastor PJ, Alpiste-Illueca FM, Micó-Martinez P, et al. MicroRNAs in gingival crevicular fluid: an observational case-control study of differential expressionin periodontitis. Noncoding RNA. 2023; 9(6):73. doi:10.3390/ncrna9060073
35.
Cinpolat O, Unal ZN, Ismi O, et al. Comparison of microRNA profiles between benign and malignant salivary gland tumors in tissue, blood and saliva samples: a prospective, case-control study. Braz J Otorhinolaryngo. 2017;83(3):276-284. doi:10.1016/j.bjorl.2016.03.013
36.
Yuan Y, Li N, Zeng L, et al. Pathogenesis investigation of miR-199-5p in oral submucous fibrosis based on bioinformatics analysis.Oral Dis. 2019;25(2):456-465. doi:10.1111/odi.13008
37.
Quadri MFA, Kamel AM, Nayeem M, et al. Smokeless tobacco and periodontitis: a systematic review with meta-analysis.J Periodontal Res. 2024;59(6):1062-1070. doi:10.1111/jre.13274
38.
Al-Rawi NH, Rizvi Z, Mkadmi S, et al. Differential expression profile of salivary oncomiRNAs among smokeless tobacco users.Eur J Dent.2023;17(04):1215-1220. doi:10.1055/s-0043-1761191
39.
Li Y, He Y, Xiang J, et al. The functional mechanism of microRNA in oral lichen planus.J Inflamm Res. 2022;4261-4274. doi:10.2147/JIR.S369304
40.
Wang L, Wu W, Chen J, et al. miR-122 and miR-199 synergistically promote autophagy in oral lichen planus by targeting the Akt/mTOR pathway.Int J Mol Med. 2019;43(3):1373-1381. doi:10.3892/ijmm.2019. 4068
41.
Rovas A, Puriene A, Snipaitiene K, et al. Analysis of periodontitis-associated miRNAs in gingival tissue, gingival crevicular fluid, saliva and blood plasma. Arch Oral Biol. 2021;126:105125. doi:10.1016/j.archoralbio.2021.105125
42.
Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):173-S182. doi:10.1002/JPER.17-0721