1.
Liberale C, Soloperto D, Marchioni A, Monzani D, Sacchetto L. Updates on larynx cancer: risk factors and oncogenesis. Int J Mol Sci. 2023;24(16): 12913.
2.
Erdoğan C, Kaya M, Suer İ. A bioinformatics analysis of circRNA/miRNA/mRNA interactions in acute myeloid leukemia. Experimed. 2023;13(1):45-53.
3.
Kaya M. Bioinformatics evaluation of the circRNA-miRNA-mRNA axis in cervical squamous cell carcinoma. Explor Med. 2024;5(5):553-65.
4.
Afonso-Grunz F, Müller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci. 2015;72(16):3127-3141.
5.
Kaya M, Abuaisha A, Süer İ, et al. Overexpression of CDC25A, AURKB, and TOP2A genes could be an important clue for luminal a breast cancer. Eur J Breast Health. 2024;20(4):284-291.
6.
Suer I, Kaya M. Is the AURKB gene involved in aml cell proliferation since it is targeted by miR-34a-5p and let-7b-5p? Konuralp Med J. 2023; 15(1):16-23.
7.
Bagatir G, Kaya M, Suer I, et al. The effect of Anzer honey on X-ray induced genotoxicity in human lymphocytes: an in vitro study. Microsc Res Tech. 2022;85(6):2241-2250.
8.
Almeida MI, Nicoloso MS, Zeng L, et al. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology. 2012;142(4):886-896.e9.
9.
Kenyon JD, Sergeeva O, Somoza RA, et al. Analysis of -5p and -3p strands of miR-145 and miR-140 during mesenchymal stem cell chondrogenic differentiation. Tissue Eng Part A. 2019;25(1-2):80-90.
10.
Ren LL, Yan TT, Shen CQ, et al. The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis. Cell Death Dis. 2018;9(6):687.
11.
Huang Y, Liu Y, Huang J, et al. Let-7b-5p promotes cell apoptosis in Parkinson's disease by targeting HMGA2. Mol Med Rep. 2021;24(5):820.
12.
Liu X, Zhao P, Du X, et al. Let-7b-5p promotes triptolide-induced growth-inhibiting effects in glioma by targeting IGF1R. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(8):5909-5925.
13.
Dai Y, Liu J, Li X, et al. Let-7b-5p inhibits colon cancer progression by prohibiting APC ubiquitination degradation and the Wnt pathway by targeting NKD1. Cancer Sci. 2023;114(5):1882-1897.
14.
Kaya M, Abuaisha A, Suer I, et al. Turmeric inhibits MDA-MB-231 cancer cell proliferation, altering miR-638-5p and its potential targets. Eur J Breast Health. 2024;20(2):102-109.
15.
Erdogan C, Suer I, Kaya M, Ozturk S, Aydin N, Kurt Z. Bioinformatics analysis of the potentially functional circRNA-miRNA-mRNA network in breast cancer. PLoS One. 2024;19(4):e0301995.
16.
Kaya M, Karataş ÖF. The relationship between larynx cancer and microRNAs. Van Med J. 2020;27(4):535-541.
17.
Broseghini E, Filippini DM, Fabbri L, et al. Diagnostic and prognostic value of microRNAs in patients with laryngeal cancer: a systematic review. Noncoding RNA. 2023;9(1):9.
18.
Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports microRNA targeting specificity. Mol Cell. 2016;64(2):320-333.
19.
Zhang WT, Zhang GX, Gao SS. The potential diagnostic accuracy of let-7 family for cancer: a meta-analysis. Technol Cancer Res Treat. 2021;20:15330338211033061.
20.
Ma Y, Shen N, Wicha MS, Luo M. The roles of the let-7 family of microRNAs in the regulation of cancer stemness. Cells. 2021;10(9):2415.
21.
Li L, Zhang X, Lin Y, et al. Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov. 2023;9(1):114.
22.
Bahojb Mahdavi SZ, Pouladi N, Amini M, et al. Let-7a-3p overexpression increases chemosensitivity to carmustine and synergistically promotes autophagy and suppresses cell survival in U87MG glioblastoma cancer cells. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(9):6903-6918.
23.
Jiang J, Liu HL, Tao L, et al. Let-7d inhibits colorectal cancer cell proliferation through the CST1/p65 pathway. Int J Oncol. 2018;53(2):781-790.
24.
Demirel G, Tanoglu EG, Aslıyuksek H. Evaluation of microRNA let-7b-3p expression levels in methamphetamine abuse. Rev Assoc Med Bras (1992). 2023;69(4):e20221391.
25.
Dai R, Zhang L, Jin H, et al. Differential expression profile of urinary exosomal microRNAs in patients with mesangial proliferative glomerulonephritis. Aging (Albany NY). 2023;15(3):866-880.
26.
Liu K, Ma L, Zhou F, et al. Identification of microRNAs related to myocardial ischemic reperfusion injury. J Cell Physiol. 2019;234(7): 11380-11390.
27.
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med. 2019;8(1):24.
28.
Murray MJ, Bailey S, Raby KL, et al. Serum levels of mature microRNAs in DICER1-mutated pleuropulmonary blastoma. Oncogenesis. 2014;3(2): e87.
29.
Chen M, Xu R, Rai A, et al. Distinct shed microvesicle and exosome microRNA signatures reveal diagnostic markers for colorectal cancer. PLoS One. 2019;14(1):e0210003.
30.
Weaver DT, Pishas KI, Williamson D, et al. Network potential identifies therapeutic miRNA cocktails in Ewing sarcoma. PLoS Comput Biol. 2021;17(10):e1008755.
31.
Li Y, Dong R, Lu M, et al. Let-7b-3p inhibits tumor growth and metastasis by targeting the BRF2-mediated MAPK/ERK pathway in human lung adenocarcinoma. Transl Lung Cancer Res. 2021;10(4):1841-1856.
32.
Zhang B, Liu Y, Yu J, Lin X. Upregulation of FGF9 and NOVA1 in cancer-associated fibroblasts promotes cell proliferation, invasion and migration of triple negative breast cancer. Drug Dev Res. 2024;85(3): e22185.
33.
Yotsumoto T, Maemura K, Watanabe K, et al. NRXN1 as a novel potential target of antibody-drug conjugates for small cell lung cancer. Oncotarget. 2020;11(39):3590-3600.
34.
Li W, Zhou K, Li M, et al. Identification of SCN7A as the key gene associated with tumor mutation burden in gastric cancer. BMC Gastroenterol. 2022;22(1):45.
35.
Ma Z, Li Z, Wang S, et al. ZMAT1 acts as a tumor suppressor in pancreatic ductal adenocarcinoma by inducing SIRT3/p53 signaling pathway. J Exp Clin Cancer Res. 2022;41(1):130.
36.
Su N, Qiu H, Chen Y, Yang T, Yan Q, Wan X. miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncol Rep. 2013;29(6):2297-2302.
37.
Ha K, Buchan JG, Alvarado DM, et al. MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum Mol Genet. 2013;22(24):4967-4977.
38.
Liu J, Song J, Li C. MYBPC1 is a key regulator for laryngeal carcinoma formation. Anticancer Drugs. 2023;34(1):1-8.
39.
Zhang J, Jiang S, Gu D, et al. Identification of novel molecular subtypes and a signature to predict prognosis and therapeutic response based on cuproptosis-related genes in prostate cancer. Front Oncol. 2023;13: 1162653.
40.
Pudova EA, Lukyanova EN, Nyushko KM, et al. Differentially expressed genes associated with prognosis in locally advanced lymph node-negative prostate cancer. Front Genet. 2019;10:730.
41.
Hu H, Wang J, Gupta A, et al. RANKL expression in normal and malignant breast tissue responds to progesterone and is up-regulated during the luteal phase. Breast Cancer Res Treat. 2014;146(3):515-523.