ACMJ

Anatolian Current Medical Journal (ACMJ) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
Relationship between ultrasonographic liver steatosis degree and oxidative/nitrosative stress in patients diagnosed with metabolic dysfunction-associated steatotic liver disease
Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) remains the most common chronic liver disease worldwide. It is considered to be a complication of metabolic syndrome. The main element in intra- and extrahepatic disorders in MASLD is oxidative/nitrosative stress (ONS). The relationship between the increase and decrease in these markers and the degree of liver steatosis defined sonographically has not been specifically studied before.
Methods: Patients in the MASLD spectrum were divided into 3 groups according to the degree of liver steatosis on ultrasonography (US). Patients without liver steatosis on US were taken as the control group. Nitric oxide (NO), malondialdehyde (MDA), catalase (CAT) and superoxide dismutase (SOD) were studied in the blood of these patients.
Results: Changes in the degree of liver steatosis on US and changes in the studied parameters were found to be statistically significant. In addition, the cut-off values of NO and MDA were shown to be 8.98 and 2.375, respectively, in distinguishing the healthy control group from the patient group. As the degree of liver steatosis increases on US, NO and MDA levels increase, while antioxidant enzymes CAT and SOD levels decrease. NO and MDA can be used to distinguish healthy and patient groups in the preliminary diagnosis of MASLD.
Conclusion: There is a significant relationship between the degree of liver steatosis on US and ONS parameters.


1. Younossi Zobair M. &ldquo;Non-alcoholic fatty liver disease-a global public health perspective.&rdquo; <em>J Hepatol.</em> 2019;70(3):531-544. doi:10.1016/j.jhep.2018.10.033
2. Wong SK, Chin KY, Ahmad F, Ima-Nirwana S. &ldquo;Regulation of inflammatory response and oxidative stress by tocotrienol in a rat model of non-alcoholic fatty liver disease.&rdquo; <em>J Functional Foods</em> 2020;74:104209. doi:10.1016/j.jff.2020.104209
3. M. Benedict, X. Zhang. Non-alcoholic fatty liver disease: an expanded review. <em>World</em> <em>J Hepatol. </em>2017;16(9):715-732. doi:10.4254/wjh.v9.i16.715
4. Sanal, MG. Biomarkers in nonalcoholic fatty liver disease-the emperor has no clothes?. <em>World J Gastroenterol</em>. WJG 2015;21(11):3223. doi:10.3748/wjg.v21.i11.3223
5. Eslam M, Sanyal AJ, George J, International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. <em>Gastroenterol</em>. 2020;158(7):1999-2014.e1. doi:10.1053/j.gastro.2019.11.312
6. Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis.<em>Hepatology</em>. 2017; 66(6):2055-2065. doi:10.1002/hep.29420
7. Gan D, Wang L, Jia M, et al. Low muscle mass and low muscle strength associate with nonalcoholic fatty liver disease.<em>Clin Nutr</em>. 2020;39(4):1124-1130. doi:10.1016/j.clnu.2019.04.023
8. Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review.<em>Front Med (Lausanne)</em>. 2021;8:595371. doi:10.3389/fmed.2021.595371
9. Gonzalez A, Huerta-Salgado C, Orozco-Aguilar J, et al. Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD).<em>Oxid Med Cell Longev</em>. 2020;2020:1617805. doi:10.1155/2020/1617805
10. Ramos-Tovar E, Muriel P. Molecular mechanisms that link oxidative stress, ınflammation, and fibrosis in the liver.<em>Antioxidants (Basel)</em>. 2020;9(12):1279. doi:10.3390/antiox9121279
11. Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage.<em>Vitam Horm</em>. 2023; 121:271-292. doi:10.1016/bs.vh.2022.09.006
12. Zhang L, Wang X, Cueto R, et al. Biochemical basis and metabolic interplay of redox regulation.<em>Redox Biol</em>. 2019;26:101284. doi:10.1016/j.redox.2019.101284
13. Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial dysfunction in skeletal muscle pathologies.<em>Curr Protein Pept Sci</em>. 2019;20(6):536-546. doi:10.2174/1389203720666190402100902
14. Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease [published correction appears in Free Radic Biol Med. 2021;162:174. doi: 10.1016/j.freeradbiomed.2020.06.011].<em>Free Radic Biol Med</em>. 2020;152:116-141. doi:10.1016/j.freeradbiomed.2020.02.025
15. Reccia I, Kumar J, Akladios C, et al. Non-alcoholic fatty liver disease: a sign of systemic disease.<em>Metabolism</em>. 2017;72:94-108. doi:10.1016/j.metabol.2017.04.011
16. Toprak D. &ldquo;Hepatosteatosis (fatty liver disease).&rdquo; <em>The Jl of Tur Family Phys.</em> (2011): 50-57.
17. İmamoğlu FG, İmamoğlu &Ccedil;, &Ccedil;iledağ N, Arda K, Tola MD. Classification of hepatosteatosis with ultrasonography and analysis of the effect of hepatosteatosis degree on the liver function tests.<em>Med J Muğla Sıtkı Ko&ccedil;man University</em>.2015;8(2<em>)</em>:23-28.
18. Beutler E. Red Cell Metabolism. Handbook of biochemical methods. 2<sup>nd</sup> ed. <em>New York: Grune and Stratton Inc</em>. 1984: 68-70.
19. Fridovich I. Superoxide dismutases.<em>Adv Enzymol Relat Areas Mol Biol</em>. 1974;41(0):35-97. doi:10.1002/9780470122860.ch2
20. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.<em>Anal Biochem</em>. 1979;95(2):351-358. doi:10.1016/0003-2697(79)90738-3
21. Pomacu MM, Tra?ca MD, Padureanu V, et al. Interrelation of inflammation and oxidative stress in liver cirrhosis.<em>Exp Ther Med</em>. 2021;21(6):602. doi:10.3892/etm.2021.10034
22. Michalak A, Lach T, Cichoz-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease.<em>J Clin Med</em>. 2021;10(14):3011. doi:10.3390/jcm10143011
23. Videla LA, Rodrigo R, Araya J, Poniachik J. Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease.<em>Free Radic Biol Med</em>. 2004;37(9):1499-1507. doi:10.1016/j.freeradbiomed.2004.06.033
24. Samancı T&Ccedil;, G&ouml;k&ccedil;imen A, Kuloğlu T, Boyacıoğlu M, Kuyucu Y, Polat S. &ldquo;Biochemical and histopathological investigation of liver tissues on high fat diet fed rats.&rdquo; 2022;23(1):101-107. doi:10.4274/meandros.galenos.2021.32932
25. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies.<em>Metab Syndr Relat Disord</em>. 2015;13(10):423-444. doi:10.1089/met.2015.0095
26. Nabih, GA, Sheshtawy NE., Mikkawy DME, Kamel MA. (2024). Serum malondialdehyde as a marker of oxidative stress in rheumatoid arthritis.<em>Egyptian Rheumatology and Rehabilitation</em>.2024;51(1):43. doi:10.1186/s43166-024-00275-4
27. Phababpha, Suphawadee, et al. Elevation of plasma malondialdehyde levels associated with the severity of coronary atherosclerosis in coronary artery disease patients.&rdquo; <em>Int J. </em>2023;10(2):3523-3529. https://www.researchgate.net/publication/37591747828-
28. Liu WN, Hsu YC, Lu CW, Lin SC, Wu TJ, Lin GM. Serum malondialdehyde-modified low-density lipoprotein as a risk marker for peripheral arterial stiffness in maintenance hemodialysis patients.<em>Medicina (Kaunas)</em>. 2024;60(5):697. doi:10. 3390/medicina60050697
29. Estep JM, Birerdinc A, Younossi Z. Non-invasive diagnostic tests for non-alcoholic fatty liver disease.<em>Curr Mol Med</em>. 2010; 10(2):166-172. doi:10.2174/156652410790963321
30. Han JH, Park MH, Myung CS.<em>Garcinia cambogia</em>ameliorates non-alcoholic fatty liver disease by inhibiting oxidative stress-mediated steatosis and apoptosis through NRF2-ARE activation.<em>Antioxidants (Basel)</em>. 2021;10(8):1226. doi:10.3390/antiox10081226 </ol> <p>
Volume 6, Issue 6, 2024
Page : 391-396
_Footer