ACMJ

Anatolian Current Medical Journal (ACMJ) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
Pioglitazone/Exenatide/SGLT-2 inhibitor combination therapy versus insulin therapy in patients with poorly controlled type 2 diabetes
Aims: We aimed to investigate the changes in glycemic status and beta cell function in type 2 diabetes mellitus (T2DM) patients with poor glycemic control despite receiving basal/bolus insulin therapy when switched from insulin therapy to combination therapy [exenatide/pioglitazone/sodium glucose cotransporter 2 inhibitor (SGLT-2i)].
Methods: A retrospective examination was made of the data of 64 patients, aged >18 years, diagnosed with T2DM, who were being followed up in the endocrinology outpatient clinic and were switched from basal/bolus insulin therapy to triple combination therapy. At the time of the patients changing to combination therapy, the glycosylated hemoglobin (HbA1c) value was ?8.5% and fasting c peptide value was within the normal reference range. The anthropometric data of the patients, and glycemic and biochemistry values with modified homeostastis model assessment ß (HOMA-ß) levels were compared before the combination therapy and at 6 months after.
Results: Compared to the baseline values, a decrease was seen after 6 months in the values of body weight (89.6±5.8 vs. 83.8±3.6, p=0.015), body mass index (BMI) (38.3±2.7 vs. 33.5±1.9, p=0.011), and waist circumference (105.6±8.8 vs. 99.7±6, p=0.027). A decrease was determined in fasting blood glucose (FBG) (197±27.3 vs. 129±13.1, p<0.01) and HbA1c (9.8±1.6 vs. 8.1±1.1, p<0.01) values, and an increase in the HOMA-ß value [233 (187.5, 282.3) vs. 318 (272.1, 365.2), p<0.001].
Conclusion: T2DM is a complex metabolic disease with more than one disorder in the pathogenesis, so it is difficult to control the disease in the long term with a single drug class. The use of drugs in a combined form, which will allow weight loss, have a positive effect on insulin resistance and improve beta cell function, without causing hypoglycemia, can achieve a better and sustainable glycemic and metabolic status.


1. Kanat M, DeFronzo RA, Abdul-Ghani MA. Treatment ofprediabetes. World J Diabetes. 2015;25(12):1207-1222. doi: 10.4239/wjd.v6.i12.1207
2. Leahy JL. Natural history of beta-cell dysfunction in NIDDM.Diabetes Care. 1990;13(9):992-1010. doi: 10.2337/diacare.13.9.992
3. Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta-cellfailure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab.2003;16(1):5-22. doi: 10.1515/jpem.2003.16.1.5
4. Marchetti P, Dotta F, Lauro D, Purrello F. An overview ofpancreatic beta-cell defects in human type 2 diabetes: implicationsfor treatment. Regul Pept. 2008;146(1-3):4-11. doi: 10.1016/j.regpep.2007.08.017
5. Davies MJ, Aroda VR, Collins BS, et al. Management ofhyperglycemia in type 2 diabetes, 2022. A consensus report bythe American Diabetes Association (ADA) and the EuropeanAssociation for the Study of Diabetes (EASD). Diabetes Care.2022;45(11):2753-2786. doi: 10.2337/dci22-0034
6. Seaquist ER, Anderson J, Childs B, et al. Hypoglycemia and diabetes:a report of a workgroup of the American Diabetes Association andthe Endocrine Society. Diabetes Care. 2013;36(5):1384-1395. doi:10.2337/dc12-2480
7. Del Prato S, Marchetti P. Targeting insulin resistance and beta-cell dysfunction: the role of thiazolidinediones. Diabetes TechnolTher. 2004;6(5):719-731. doi: 10.1089/dia.2004.6.719
8. Ovalle F, Bell DS. Effect of rosiglitazone versus insulin on thepancreatic beta-cell function of subjects with type 2 diabetes. DiabetesCare. 2004;27(11):2585-2589. doi: 10.2337/diacare.27.11.2585
9. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, Mari A,DeFronzo RA. Thiazolidinediones improve beta-cell functionin type 2 diabetic patients. Am J Physiol Endocrinol Metab.2007;292(3):E871-E883. doi: 10.1152/ajpendo.00551.2006
10. Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, PrentkiM. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity.Diabetologia. 2004;47(5):806-815. doi: 10.1007/s00125-004-1379-1386
11. Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment oftype 2 diabetes. Endocr Rev. 2011;32(4):515-531. doi: 10.1210/er.2010-0029
12. Katz PM, Leiter LA. The role of the kidney and SGLT2 inhibitors intype 2 diabetes. Can J Diabetes. 2015;39(5):167-175. doi: 10.1016/j.jcjd.2015.09.001
13. Li X, Zhou ZG, Qi HY, Chen XY, Huang G. Replacement ofinsulin by fasting C-peptide in modified homeostasis modelassessment to evaluate insulin resistance and islet &beta; cell function.Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2004;29(4):419-423.
14. Russell C, Petrie J. Chapter 6: GLP-1 receptor agonists. In: FisherM, Mckay GA, Llano A, eds. Diabetes Drug Notes. John Wileyand Sons: 2022:130-160.
15. Kaneto H, Matsuoka TA, Nakatani Y, et al. Oxidative stress,ER stress, and the JNK pathway in type 2 diabetes. J Mol Med.2005;83(6):429-439. doi: 10.1007/s00109-005-0640-x
16. Kanda Y, Shimoda M, Hamamoto S, et al. Molecular mechanismby which pioglitazone preserves pancreatic beta-cells inobese diabetic mice: evidence for acute and chronic actionsas a PPARgamma agonist. Am J Physiol Endocrinol Metab.2010;298(2):278-286. doi:10.1152/ajpendo.00388.2009
17. Shimoda M, Kanda Y, Hamamoto S, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic betacells via regulation of cell kinetics and suppression of oxidativeand endoplasmic reticulum stress in a mouse model of diabetes.Diabetologia. 2011;54(5):1098-1108. doi: 10.1007/s00125-011-2069-9
18. Wang AP, Li X, Zheng Y, et al. Thiazolidinediones protect mousepancreatic b-cells directly from cytokine-induced cytotoxicitythrough PPAR-dependent mechanisms. Acta Diabetol.2013;50(2):163-173. doi: 10.1007/s00592-010-0239-8
19. Marmentini C, Guimar&atilde;es DSPSF, de Lima TI, et al. Rosiglitazoneprotects INS-1E cells from human islet amyloid polypeptide toxicity.Eur J Pharmacol. 2022;928:175122. doi: 10.1016/j.ejphar.2022.175122
20. Kanno A, Asahara SI, Kawamura M, et al. Early administrationof dapagliflozin preserves pancreatic b-cell mass through a legacyeffect in a mouse model of type 2 diabetes. J Diabetes Investig.2019;10(3):577-590. doi: 10.1111/jdi.12945
21. Hansen HH, Jelsing J, Hansen CF, et al. The sodium glucosecotransporter type 2 inhibitor empagliflozin preserves b-cellmass and restores glucose homeostasis in the male zuckerdiabetic fatty rat. J Pharmacol Exp Ther. 2014;350(3):657-664.doi: 10.1124/jpet.114.213454
22. Kimura T, Kaneto H, Shimoda M, et al. Protective effects ofpioglitazone and/or liraglutide on pancreatic &beta;-cells in db/db mice: Comparison of their effects between in an early andadvanced stage of diabetes. Mol Cell Endocrinol. 2015;15:400:78-89. doi: 10.1016/j.mce.2014.11.018
23. Abd El Aziz MS, Kahle M, Meier JJ, Nauck MA. A meta-analysiscomparing clinical effects of short- or long-acting GLP-1 receptoragonists versus insulin treatment from head-to-head studies intype 2 diabetic patients. Diabetes Obes Metab. 2017;19(2):216-227. doi: 10.1111/dom.12804
24. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonistsin the treatment of type 2 diabetes-state-of-the-art. Mol Metab.2021;46:101102. doi: 10.1016/j.molmet.2020.101102
25. Brunzell JD, Davidson M, Furberg CD, et al. American DiabetesAssociation; American College of Cardiology Foundation.Lipoprotein management in patients with cardiometabolic risk:consensus statement from the American Diabetes Associationand the American College of Cardiology Foundation. DiabetesCare. 2008;31(4):811-822. doi: 10.2337/dc08-9018
26. Betteridge DJ. Effects of pioglitazone on lipid and lipoproteinmetabolism. Diabetes Obes Metab. 2007;9(5):640-647. doi: 10.1111/j.1463-1326.2007.00715.x
27. Sun F, Wu S, Wang J, et al. Effect of glucagon-like peptide-1receptor agonists on lipid profiles among type 2 diabetes:a systematic review and network meta-analysis. Clin Ther.2015;37(1):225-241. doi: 10.1016/j.clinthera.2014.11.008
28. S&aacute;nchez-Garc&iacute;a A, Simental-Mend&iacute;a M, Mill&aacute;n-Alan&iacute;s JM,Simental-Mend&iacute;a LE. Effect of sodium-glucose co-transporter2 inhibitors on lipid profile: a systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol Res.2020;160:105068. doi: 10.1016/j.phrs.2020.105068
29. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW,White WB. Efects of sodium-glucose co-transporter 2 inhibitorson blood pressure: a systematic review and meta-analysis. J AmSoc Hypertens. 2014;8(4):262-275. doi: 10.1016/j.jash.2014.01.007
30. Wanner C, Inzucchi SE, Lachin JM, et al. Empaglifozin andprogression of kidney disease in type 2 diabetes. N Engl J Med.2016;375(4):323-334.
31. Muskiet MHA, Tonneijck L, Smits MM, et al. GLP-1 and thekidney: from physiology to pharmacology and outcomes indiabetes. Nat Rev Nephrol. 2017;13(10):605-628.
32. Van Ruiten CC, Smits MM, Kok MD, et al. Mechanismsunderlying the blood pressure lowering effects of dapagliflozin,exenatide, and their combination in people with type 2 diabetes:a secondary analysis of a randomized trial. Cardiovasc Diabetol.2022;21(1):63. doi: 10.1186/s12933-022-01492-x
Volume 6, Issue 2, 2024
Page : 121-126
_Footer