1.
Desai AD, Lavelle M, Boursiquot BC. et al. Long-termcomplications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1-C11. doi.org/10.1152/ajpcell.00375.2021
2.
Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictorsof long COVID. Nat Med. 2021;27(4):626-631. doi:10.1038/s41591-021-01292-y
3.
Seyed Alinaghi S, Afsahi AM, MohsseniPour M, et al. Latecomplications of COVID-19; a systematic review of currentevidence. Arch Acad Emerg Med. 2021;9(1):e14. doi:10.22037/aaem.v9i1.1058
4.
ACTT-1 Study Group., Remdesivir for the treatment of Covid-19:final report. N Engl J Med. 2020;383(19):1813-1826. doi:10.1056/NEJMoa2007764
5.
Ogut E, Armagan K. evaluation of the potential impact ofmedical ozone therapy on COVID-19: a review study. Ozone:Science & Engineering. 2022;45(3):213-231. doi:10.1080/01919512.2022.2065242
6.
Zawilska JB, Kuczynska K. Psychiatric and neurologicalcomplications of long COVID. J Psychiatr Res. 2022;156:349-360.doi: 10.1016/j.jpsychires.2022.10.045
7.
Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonarymanifestations of COVID-19. Nat Med. 2020;26(7):1017-1032.doi:10.1038/s41591-020-0968-3
8.
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2cell entry depends on ACE2 and TMPRSS2 and is blocked bya clinically proven protease inhibitor. Cell. 2020;181(2):271-280.doi: 10.1016/j.cell.2020.02.052
9.
Qi F, Qian S, Zhang S, et al. Single-cell RNA sequencing of13 human tissues identify cell types and receptors of humancoronaviruses. Biochem Biophys Res Commun. 2020;526(1):135-140. doi:10. 1016/j.bbrc.2020.03.044
10.
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptorACE2 is an interferon-stimulated gene in human airway epithelialcells and is detected in specific cell subsets across tissues. Cell.2020;181(5):1016-1035. doi:10.1016/j. cell.2020.04.035
11.
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19syndrome. Nat Med. 2021;27(4):601-615. doi:10.1038/s41591-021-01283-z
12.
Ehrenfeld M, Tincani A, Andreoli L, et al. COVID-19and autoimmunity. Autoimmun Rev. 2020;19(8):102597.doi:10.1016/j.autrev.2020.102597
13.
Carfì A, Bernabei R, Landi F, et al. Persistent symptoms inpatients after acute COVID-19. JAMA 2020;324(6):603-605.doi:10.1001/jama. 2020.12603
14.
Huang C, Huang L, Wang Y, et al. 6-month consequences ofCOVID-19 in patients discharged from hospital: a cohortstudy. Lancet. 2021;397(10270):220-232. doi:10.1016/S0140-6736(20)32656-8
15.
Generoso JS, Barichello de Quevedo JL, Cattani M, et al.Neurobiology of COVID-19: how can the virus affect the brain?Braz J Psychiatry. 2021;43(6):650-664. doi: 10.1590/1516-4446-2020-1488
16.
Ellul MA, Benjamin L, Singh B, et al. Neurological associations ofCOVID-19. Lancet Neurol. 2020;19(9):767-783.
17.
Winkler AS, Knauss S, Schmutzhard E, et al. A call for aglobal COVID-19 Neuro Research Coalition. Lancet Neurol.2020;19(6):482-484.
18.
Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, etal. Neurologic manifestations in hospitalized patients withCOVID-19. Neurol. 2020;95(8):e1060-e1070.
19.
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection andendotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418.
20.
Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 isassociated with changes in brain structure in UK Biobank.Nature. 2022;604(7907):697-707.
21.
Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular,and molecular basis of brain infection in COVID-19 patients.Proc Natl Acad Sci. 2022;119(35):e2200960119. doi: 10.1073/pnas.2200960119
22.
Hugon J, Msika EF, Queneau M, et al. Long COVID: cognitivecomplaints (brain fog) and dysfunction of the cingulate cortex. JNeurol. 2022;269(1):44-46.
23.
Doğan A, Burulday V, Alpua M. İdiyopatik Parkinson hastalarındaolfaktör bulbus volüm ve olfaktör sulkus derinliğinin manyetikrezonans görüntüleme ile değerlendirilmesi. Kırıkkale Üni TıpFak Derg. 2019;21(1):22-27. doi:10.24938/kutfd.429018
24.
Altmann J. Autoradiographic and histological studies of postnatalneurogenesis. IV. cell proliferation and migration in the anteriorforebrain, with special reference to persisting neurogenesis in theolfactory bulb. J Comp Neurol. 1969;137(4):433-457.
25.
Graziadei PPC, Graziadei GM. Neurogenesis andneuronregeneration in the olfactory system of mammals. III.deafferentation and reinnervation of the olfactory bulb followingsection of the fila olfactoria in rat. J Neurocytol. 1980;9(2):145-162.
26.
Takahashi T, Ota M, Numata Y, et al. Relationships betweenthe Fear of COVID-19 Scale and regional brain atrophy in mildcognitive impairment. Acta Neuropsychiatrica. 2022;34(3):153-162.
27.
Rebsamen M, Friedli C, Radojewski P, et al. Multiple sclerosis asa model to investigate SARS-CoV-2 effect on brain atrophy. CNSNeurosci Ther. 2023;29(2):538-543. doi: 10.1111/cns.14050
28.
Jobin B, Boller B, Frasnelli J. Volumetry of olfactory structures inmild cognitive impairment and Alzheimer’s disease: a systematicreview and a meta-analysis. Brain Sci. 2021;11(8):6-13. doi:10.3390/brainsci11081010
29.
Al-Otaibi M, Lessard-Beaudoin M, Castellano CA, et al.Volumetric MRI demonstrates atrophy of the olfactory cortex inAD. Curr Alzheimer Res. 2021;17(10):904-915.
30.
Najt P, Richards HL, Fortune DG. Brain imaging in patients withCOVID-19: a systematic review. Brain Behav Immun Health.2021;16:100290. doi: 10.1016/j.bbih.2021.100290
31.
Wu Y, Xu X, Chen Z, et al. Nervous system involvement afterinfection with COVID-19 and other coronaviruses. Brain BehavImmun. 2020;87:18-22. doi: 10.1016/j.bbi.2020. 03.031
32.
Lu Y, Li X, Geng D, et al. Cerebral micro-structural changesin COVID-19 patients-an MRI-based 3-month follow-upstudy. EClinicalMedicine. 2020;25:100484. doi: 10.1016/j.eclinm.2020.100484
33.
Rahman A, Tabassum T, Araf Y, et al. Silent hypoxia in COVID-19:pathomechanism and possible management strategy. Mol BiolRep. 2021;48(4):3863-3869. doi: 10.1007/s11033-021-06358-1
34.
Ahmed M, Roy S, Iktidar MA, et al. Post-COVID-19 memorycomplaints: prevalence and associated factors. Neurología. 2022.doi: 10.1016/j.nrl.2022.03.007
35.
Mahajan A, Mason GF. A sobering addition to the literature onCOVID-19 and the brain. J Clin Invest. 2021;131(8):e148376. doi:10.1172/JCI148376
36.
Liu X, Yan W, Lu T, Han Y, Lu L. Longitudinal abnormalitiesin brain structure in COVID-19 patients. Neurosci Bull.2022;38(12):1608-1612. doi: 10.1007/s12264-022-00913-x
37.
Shan D, Li S, Xu R, et al. Post-COVID-19 human memoryimpairment: a PRISMA-based systematic review of evidence frombrain imaging studies. Front Aging Neurosci. 2022;14:1077384.doi: 10.3389/fnagi.2022.1077384.
38.
Cecchetti G, Agosta F, Canu E, et al. Cognitive, EEG, and MRIfeatures of COVID-19 survivors: a 10-month study. J Neurol.2022;269(7):3400-3412. doi: 10.1007/s00415-022-11047-5
39.
Ermis U, Rust MI, Bungenberg J, et al. Neurological symptoms inCOVID-19: a cross-sectional monocentric study of hospitalizedpatients. Neurol Res Pract. 2021;3(1):1-12. doi: 10.1186/s42466-021-00116-1
40.
Hadad R, Khoury J, Stanger C, et al. Cognitive dysfunctionfollowing COVID-19 infection. J Neurovirol. 2022;28(3):430-437. doi: 10.1007/s13365-022-01079-y
41.
Meyer PT, Hellwig S, Blazhenets G, et al. Molecular imagingfindings on acute and long-term effects of COVID-19 on thebrain: a systematic review. J Nucl Med. 2022;63(7):971-980. doi:10.2967/jnumed.121.263085
42.
Bungenberg J, Humkamp K, Hohenfeld C, et al. Long COVID-19:objectifying most self-reported neurological symptoms. AnnalClin Transl Neurol. 2022;9(2):141-154. doi: 10.1002/acn3.51496
43.
Newhouse A, Kritzer MD, Eryilmaz H, et al. Neurocircuitryhypothesis and clinical experience treating neuropsychiatricsymptoms of post acute sequelae of SARS-CoV-2 (PASC). J AcadConsult Liaison Psychiatry. 2022;63(6):619-627. doi: 10.1016/j.jaclp.2022. 08.007
44.
Tian T, Wu J, Chen T, et al. Long-term follow-up of dynamicbrain changes in patients recovered from COVID-19 withoutneurological manifestations. JCI Insight. 2022;7(4):e155827. doi:10.1172/jci.insight.155827
45.
Fernández-Castañeda A, Lu P, Geraghty AC, et al. Mildrespiratory SARS-CoV-2 infection can cause multi-lineagecellular dysregulation and myelin loss in the brain. BioRxiv.2022:2022.01.07.475453. doi: 10.1101/2022.01.07.475453
46.
Li C, Liu J, Lin J. et al. COVID-19 and risk of neurodegenerativedisorders: a Mendelian randomization study. Transl Psychiatry.2022;12(1):283. doi.org/10.1038/s41398-022-02052-3
47.
Rahmati M, Yon DK, Lee SW, et al. New-onset neurodegenerativediseases as long-term sequelae of SARS-CoV-2 infection:a systematic review and meta-analysis. J Med Virol.2023;95(7):e28909. doi: 10.1002/jmv.28909.
48.
Leng A, Shah M, Ahmad SA, et al. Pathogenesis underlyingneurological manifestations of long COVID syndrome andpotential therapeutics. Cells. 2023;12(5):816. doi.org/10.3390/cells 12050816