ACMJ

Anatolian Current Medical Journal (ACMJ) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
Asymptomatic COVID-19 and structural changes in the brain
Aims: Neurological symptoms are the most prevalent extrapulmonary complications of coronavirus disease 2019 (COVID-19). In this context, the objective of this study is to assess the brain magnetic resonance imaging (MRI) parameters of asymptomatic COVID-19 individuals one year after diagnosed with COVID-19 in comparison with healthy control subjects.
Methods: The population of this prospective study consisted of individuals who have not developed olfactory impairment or other complications within one year after diagnosed with COVID-19. For the study, 8 male, 25 female, 4 male and 23 female individuals were accepted for PCG and CG, respectively, according to the inclusion and exclusion criteria. The mean age was found to be 37.75±11.56 and 37.11±10.67, respectively. All participants included in the study underwent olfactory sulcus (OS) depth, olfactory bulb (OB) volume, hippocampal sclerosis (HS), insular gyrus area, and corpus amygdala area measurements.
Results: The bilateral OB volume, insular gyrus area and corpus amygdala area were significantly lower in the post-COVID-19 group (PCG) than in the control group (CG) (p<0.05). On the other hand, the bilateral OS depth was significantly higher in PCG than in CG (p<0.05). In the PCG, the insular gyrus area and corpus amygdala area values of the right side were significantly higher than those of the left side (p<0.05). In addition, bilateral HS was detected in five patients in the PCG, right-sided HS in two patients, and left-sided HS in one patient.
Conclusion: The findings of this study have shown that COVID-19 infection, albeit asymptomatic, can trigger neurodegeneration. We believe that in the future COVID-19 infection will play a role in the etiopathogenesis of many neurodegenerative diseases.


1. Desai AD, Lavelle M, Boursiquot BC. et al. Long-termcomplications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1-C11. doi.org/10.1152/ajpcell.00375.2021
2. Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictorsof long COVID. Nat Med. 2021;27(4):626-631. doi:10.1038/s41591-021-01292-y
3. Seyed Alinaghi S, Afsahi AM, MohsseniPour M, et al. Latecomplications of COVID-19; a systematic review of currentevidence. Arch Acad Emerg Med. 2021;9(1):e14. doi:10.22037/aaem.v9i1.1058
4. ACTT-1 Study Group., Remdesivir for the treatment of Covid-19:final report. N Engl J Med. 2020;383(19):1813-1826. doi:10.1056/NEJMoa2007764
5. Ogut E, Armagan K. evaluation of the potential impact ofmedical ozone therapy on COVID-19: a review study. Ozone:Science &amp; Engineering. 2022;45(3):213-231. doi:10.1080/01919512.2022.2065242
6. Zawilska JB, Kuczynska K. Psychiatric and neurologicalcomplications of long COVID. J Psychiatr Res. 2022;156:349-360.doi: 10.1016/j.jpsychires.2022.10.045
7. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonarymanifestations of COVID-19. Nat Med. 2020;26(7):1017-1032.doi:10.1038/s41591-020-0968-3
8. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2cell entry depends on ACE2 and TMPRSS2 and is blocked bya clinically proven protease inhibitor. Cell. 2020;181(2):271-280.doi: 10.1016/j.cell.2020.02.052
9. Qi F, Qian S, Zhang S, et al. Single-cell RNA sequencing of13 human tissues identify cell types and receptors of humancoronaviruses. Biochem Biophys Res Commun. 2020;526(1):135-140. doi:10. 1016/j.bbrc.2020.03.044
10. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptorACE2 is an interferon-stimulated gene in human airway epithelialcells and is detected in specific cell subsets across tissues. Cell.2020;181(5):1016-1035. doi:10.1016/j. cell.2020.04.035
11. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19syndrome. Nat Med. 2021;27(4):601-615. doi:10.1038/s41591-021-01283-z
12. Ehrenfeld M, Tincani A, Andreoli L, et al. COVID-19and autoimmunity. Autoimmun Rev. 2020;19(8):102597.doi:10.1016/j.autrev.2020.102597
13. Carf&igrave; A, Bernabei R, Landi F, et al. Persistent symptoms inpatients after acute COVID-19. JAMA 2020;324(6):603-605.doi:10.1001/jama. 2020.12603
14. Huang C, Huang L, Wang Y, et al. 6-month consequences ofCOVID-19 in patients discharged from hospital: a cohortstudy. Lancet. 2021;397(10270):220-232. doi:10.1016/S0140-6736(20)32656-8
15. Generoso JS, Barichello de Quevedo JL, Cattani M, et al.Neurobiology of COVID-19: how can the virus affect the brain?Braz J Psychiatry. 2021;43(6):650-664. doi: 10.1590/1516-4446-2020-1488
16. Ellul MA, Benjamin L, Singh B, et al. Neurological associations ofCOVID-19. Lancet Neurol. 2020;19(9):767-783.
17. Winkler AS, Knauss S, Schmutzhard E, et al. A call for aglobal COVID-19 Neuro Research Coalition. Lancet Neurol.2020;19(6):482-484.
18. Romero-S&aacute;nchez CM, D&iacute;az-Maroto I, Fern&aacute;ndez-D&iacute;az E, etal. Neurologic manifestations in hospitalized patients withCOVID-19. Neurol. 2020;95(8):e1060-e1070.
19. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection andendotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418.
20. Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 isassociated with changes in brain structure in UK Biobank.Nature. 2022;604(7907):697-707.
21. Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular,and molecular basis of brain infection in COVID-19 patients.Proc Natl Acad Sci. 2022;119(35):e2200960119. doi: 10.1073/pnas.2200960119
22. Hugon J, Msika EF, Queneau M, et al. Long COVID: cognitivecomplaints (brain fog) and dysfunction of the cingulate cortex. JNeurol. 2022;269(1):44-46.
23. Doğan A, Burulday V, Alpua M. İdiyopatik Parkinson hastalarındaolfakt&ouml;r bulbus vol&uuml;m ve olfakt&ouml;r sulkus derinliğinin manyetikrezonans g&ouml;r&uuml;nt&uuml;leme ile değerlendirilmesi. Kırıkkale &Uuml;ni TıpFak Derg. 2019;21(1):22-27. doi:10.24938/kutfd.429018
24. Altmann J. Autoradiographic and histological studies of postnatalneurogenesis. IV. cell proliferation and migration in the anteriorforebrain, with special reference to persisting neurogenesis in theolfactory bulb. J Comp Neurol. 1969;137(4):433-457.
25. Graziadei PPC, Graziadei GM. Neurogenesis andneuronregeneration in the olfactory system of mammals. III.deafferentation and reinnervation of the olfactory bulb followingsection of the fila olfactoria in rat. J Neurocytol. 1980;9(2):145-162.
26. Takahashi T, Ota M, Numata Y, et al. Relationships betweenthe Fear of COVID-19 Scale and regional brain atrophy in mildcognitive impairment. Acta Neuropsychiatrica. 2022;34(3):153-162.
27. Rebsamen M, Friedli C, Radojewski P, et al. Multiple sclerosis asa model to investigate SARS-CoV-2 effect on brain atrophy. CNSNeurosci Ther. 2023;29(2):538-543. doi: 10.1111/cns.14050
28. Jobin B, Boller B, Frasnelli J. Volumetry of olfactory structures inmild cognitive impairment and Alzheimer&rsquo;s disease: a systematicreview and a meta-analysis. Brain Sci. 2021;11(8):6-13. doi:10.3390/brainsci11081010
29. Al-Otaibi M, Lessard-Beaudoin M, Castellano CA, et al.Volumetric MRI demonstrates atrophy of the olfactory cortex inAD. Curr Alzheimer Res. 2021;17(10):904-915.
30. Najt P, Richards HL, Fortune DG. Brain imaging in patients withCOVID-19: a systematic review. Brain Behav Immun Health.2021;16:100290. doi: 10.1016/j.bbih.2021.100290
31. Wu Y, Xu X, Chen Z, et al. Nervous system involvement afterinfection with COVID-19 and other coronaviruses. Brain BehavImmun. 2020;87:18-22. doi: 10.1016/j.bbi.2020. 03.031
32. Lu Y, Li X, Geng D, et al. Cerebral micro-structural changesin COVID-19 patients-an MRI-based 3-month follow-upstudy. EClinicalMedicine. 2020;25:100484. doi: 10.1016/j.eclinm.2020.100484
33. Rahman A, Tabassum T, Araf Y, et al. Silent hypoxia in COVID-19:pathomechanism and possible management strategy. Mol BiolRep. 2021;48(4):3863-3869. doi: 10.1007/s11033-021-06358-1
34. Ahmed M, Roy S, Iktidar MA, et al. Post-COVID-19 memorycomplaints: prevalence and associated factors. Neurolog&iacute;a. 2022.doi: 10.1016/j.nrl.2022.03.007
35. Mahajan A, Mason GF. A sobering addition to the literature onCOVID-19 and the brain. J Clin Invest. 2021;131(8):e148376. doi:10.1172/JCI148376
36. Liu X, Yan W, Lu T, Han Y, Lu L. Longitudinal abnormalitiesin brain structure in COVID-19 patients. Neurosci Bull.2022;38(12):1608-1612. doi: 10.1007/s12264-022-00913-x
37. Shan D, Li S, Xu R, et al. Post-COVID-19 human memoryimpairment: a PRISMA-based systematic review of evidence frombrain imaging studies. Front Aging Neurosci. 2022;14:1077384.doi: 10.3389/fnagi.2022.1077384.
38. Cecchetti G, Agosta F, Canu E, et al. Cognitive, EEG, and MRIfeatures of COVID-19 survivors: a 10-month study. J Neurol.2022;269(7):3400-3412. doi: 10.1007/s00415-022-11047-5
39. Ermis U, Rust MI, Bungenberg J, et al. Neurological symptoms inCOVID-19: a cross-sectional monocentric study of hospitalizedpatients. Neurol Res Pract. 2021;3(1):1-12. doi: 10.1186/s42466-021-00116-1
40. Hadad R, Khoury J, Stanger C, et al. Cognitive dysfunctionfollowing COVID-19 infection. J Neurovirol. 2022;28(3):430-437. doi: 10.1007/s13365-022-01079-y
41. Meyer PT, Hellwig S, Blazhenets G, et al. Molecular imagingfindings on acute and long-term effects of COVID-19 on thebrain: a systematic review. J Nucl Med. 2022;63(7):971-980. doi:10.2967/jnumed.121.263085
42. Bungenberg J, Humkamp K, Hohenfeld C, et al. Long COVID-19:objectifying most self-reported neurological symptoms. AnnalClin Transl Neurol. 2022;9(2):141-154. doi: 10.1002/acn3.51496
43. Newhouse A, Kritzer MD, Eryilmaz H, et al. Neurocircuitryhypothesis and clinical experience treating neuropsychiatricsymptoms of post acute sequelae of SARS-CoV-2 (PASC). J AcadConsult Liaison Psychiatry. 2022;63(6):619-627. doi: 10.1016/j.jaclp.2022. 08.007
44. Tian T, Wu J, Chen T, et al. Long-term follow-up of dynamicbrain changes in patients recovered from COVID-19 withoutneurological manifestations. JCI Insight. 2022;7(4):e155827. doi:10.1172/jci.insight.155827
45. Fern&aacute;ndez-Casta&ntilde;eda A, Lu P, Geraghty AC, et al. Mildrespiratory SARS-CoV-2 infection can cause multi-lineagecellular dysregulation and myelin loss in the brain. BioRxiv.2022:2022.01.07.475453. doi: 10.1101/2022.01.07.475453
46. Li C, Liu J, Lin J. et al. COVID-19 and risk of neurodegenerativedisorders: a Mendelian randomization study. Transl Psychiatry.2022;12(1):283. doi.org/10.1038/s41398-022-02052-3
47. Rahmati M, Yon DK, Lee SW, et al. New-onset neurodegenerativediseases as long-term sequelae of SARS-CoV-2 infection:a systematic review and meta-analysis. J Med Virol.2023;95(7):e28909. doi: 10.1002/jmv.28909.
48. Leng A, Shah M, Ahmad SA, et al. Pathogenesis underlyingneurological manifestations of long COVID syndrome andpotential therapeutics. Cells. 2023;12(5):816. doi.org/10.3390/cells 12050816
Volume 6, Issue 1, 2024
Page : 59-64
_Footer