ACMJ

Anatolian Current Medical Journal (ACMJ) is an unbiased, peer-reviewed, and open access international medical journal. The Journal publishes interesting clinical and experimental research conducted in all fields of medicine, interesting case reports, and clinical images, invited reviews, editorials, letters, comments, and related knowledge.

EndNote Style
Index
Original Article
New determinants for causal neural mechanism of dry mouth in Parkinson’s disease induced by destruction of superior salivatory nucleus, facial nerve, and submandibular gland circuitry: an experimental study
Aims: Dry mouth has been considered a clinical finding of Parkinson’s disease (PD), but we think otherwise. We studied if the olfactory bulbectomy (OBX) might rely on the superior salivatory nucleus (SSN), submandibular ganglia (SMGn), and submandibular glands (SLGl) circuity disruption induced submandibular gland degeneration related dry mouth in rats. Material and
Methods: This study was carried out on twenty-six male rats. Five (GI-n=5), six (GII, n=6), and sixteen (GIII, n=15) of them were used as control, SHAM, and OBX groups, respectively, and followed eight weeks. PD-related clinical examinations were done before and after the experiment (1/day), and animals were decapitated. The olfactory bulb volumes (mm3), degenerated neuron densities of SSN/SMG (n/mm3 and SMGl follicles volumes were detected serologically. Olfactory bulb volume values and degenerated neuron density values of SSN/SMGn/SMGl follicles volumes were compared statistically.
Results: OBX-applied animals showed anosmia, tremors, rigidity, and memory loss. The mean olfactory bulb volumes (mm3), degenerated neuron density of SSN (n/mm3), SMGn (n/mm3), and follicles volumes of SMGl (cubic micrometer/mm3) were measured in the order written as; (4.27±0.21), (4±1), (5±2), (81.23±13.34).106 in GI; (3.67±0.33), (14±3), (17±4), (72.45±11.78).106 in GII and (2.91±0.14), (23±5), (29±8), (57.19±11.93).106 in Group III. The mean P values between olfactory bulb volumes, degenerated neuron densities of SSN and SMGn, and salivary follicles volumes were: p<0.005 in GI/GII; p<0.0005 in GII/GIII; p<0.0001 in GI/GIII.
Conclusion: OBX-related olfactory network designalisation may be responsible for SSN/SMGn circuitry degeneration-induced SMGl atrophy-based dry mouth. The OBX-related dry mouth should be considered a causative factor for Parkinson’s disease, not a result.


1. Tarakad A, Jankovic J. Anosmia and ageusia in Parkinson&rsquo;sdisease. Int Rev Neurobiol 2017; 133: 541-56.
2. Kang P, Kloke J, Jain S. Olfactory dysfunction and parasympatheticdysautonomia in Parkinson&rsquo;s disease. Clin Auton Res 2012; 22:161-6.
3. Morley JF, Weintraub D, Mamikonyan E, Moberg PJ, SiderowfAD, Duda JE. Olfactory dysfunction is associated withneuropsychiatric manifestations in Parkinson&rsquo;s disease. MovDisord 2011; 26: 2051-7.
4. Proserpio C, de Graaf C, Laureati M, Pagliarini E, Boesveldt S.Impact of ambient odors on food intake, saliva production andappetite ratings. Physiol Behav 2017; 174: 35-41.
5. Henkin RI, Velicu I. Decreased parotid salivary cyclic nucleotidesrelated to smell loss severity in patients with taste and smelldysfunction. Metabolism 2009; 58: 1717-23.
6. Watanabe H, Mizunami M. Pavlov&rsquo;s cockroach: classicalconditioning of salivation in an insect. PLoS One 2007; 2: e529.
7. Zang Y, Han P, Burghardt S, Knaapila A, Schriever V, Hummel T.Influence of olfactory dysfunction on the perception of food. EurArch Otorhinolaryngol 2019; 276: 2811-7.
8. Dickson DW. Parkinson&rsquo;s disease and parkinsonism:neuropathology. Cold Spring Harb Perspect Med. 2012; 2(8).
9. Paşahan R, Yardım A, Karadağ MK, Alpaslan A, Aydın MD.Dry mouth caused by facial nerve ischemia due to subarachnoidhemorrhage: an experimental study. World Neurosurg 2021; 154:e488-e94.
10. Aydin MD, Kanat A, Hacimuftuoglu A, Ozmen S, AhiskaliogluA, Kocak MN. A new experimental evidence that olfactory bulblesion may be a causative factor for substantia nigra degeneration;preliminary study. Int J Neurosci 2021; 131: 220-7.
11. Yeomans MR. Olfactory influences on appetite and satiety inhumans. Physiol Behav. 2006; 87: 800-4.
12. Lee VM, Linden RW. An olfactory-submandibular salivary reflexin humans. Exp Physiol 1992; 77: 221-4.
13. Lee VM, Linden RW. An olfactory-parotid salivary reflex inhumans? Exp Physiol 1991; 76: 347-55.
14. Savica R, Rocca WA, Ahlskog JE. When does Parkinson diseasestart? Arch Neurol 2010; 67: 798-801.
15. Alvarez MV, Grogan PM. Hyposmia in Parkinson&rsquo;s disease.Psychiatry Clin Neurosci 2012; 66: 370.
16. Suchowersky O. Non-motor symptoms and parkinsonism. Can JNeurol Sci 2013; 40: 1-2.
17. Lasiter PS, Deems DA, Glanzman DL. Thalamocorticalrelations in taste aversion learning: I. Involvement of gustatorythalamocortical projections in taste aversion learning. BehavNeurosci 1985; 99: 454-76.
18. Mitoh Y, Funahashi M, Fujii A, Fujita M, Kobashi M, Matsuo R.Development of inhibitory synaptic transmission to the superiorsalivatory nucleus in rats. Brain Res 2008; 1191: 47-54.
19. Nicholson JE, Severin CM. The superior and inferior salivatorynuclei in the rat. Neurosci Lett 1981; 21: 149-54.
20. Ng YK, Wong WC, Ling EA. A light and electron microscopicallocalisation of the superior salivatory nucleus of the rat. JHirnforsch 1994; 35: 39-48.
21. Li C, Fitzgerald ME, Del Mar N, Reiner A. Disinhibition ofneurons of the nucleus of solitary tract that project to the superiorsalivatory nucleus causes choroidal vasodilation: Implications formechanisms underlying choroidal baroregulation. Neurosci Lett2016; 633: 106-11.
22. Takeuchi Y, Fukui Y, Ichiyama M, Miyoshi S, Nishimura Y. Directamygdaloid projections to the superior salivatory nucleus: a lightand electron microscopic study in the cat. Brain Res Bull 1991;27: 85-92.
23. Way JS. Evidence for the site of the superior salivatory nucleusin the guinea pig: a retrograde HRP study. Anat Rec 1981; 201:119-26.
24. Matsuo R, Yamamoto T, Kawamura Y. Morphological andfunctional evaluation of the superior salivatory nucleus inrabbits. Exp Neurol 1980; 68: 147-57.
25. Fukami H, Bradley RM. Biophysical and morphologicalproperties of parasympathetic neurons controlling rats&rsquo; parotidand von Ebner salivary glands. J Neurophysiol. 2005; 93: 678-86.
26. Eisenman JS. Response of rat superior salivatory units to chordatympani stimulation. Brain Res Bull. 1983; 10: 811-5.
27. Templeton D, Thulin A. Secretory, motor and vascular effectsin the sublingual gland of the rat caused by autonomic nervestimulation. Q J Exp Physiol Cogn Med Sci 1978; 63: 59-66.
28. Ramos JMJ, Castillo ME, Puerto A. Relationship betweenprandial drinking behavior and supersensitivity of salivaryglands after superior salivatory nucleus lesions in rats. PhysiolBehav 2020; 224: 113022.
29. Kim M, Chiego DJ, Jr., Bradley RM. Morphology ofparasympathetic neurons innervating rat lingual salivaryglands. Auton Neurosci 2004; 111: 27-36.
30. Karadeniz E, Kocak MN, Ahiskalioglu A, et al. Exploring of theunpredicted effects of olfactory network injuries on mammarygland degeneration: a preliminary experimental study. J InvestSurg 2019; 32: 624-31.
31. Firinci B, Caglar O, Karadeniz E, Ahiskalioglu A, Demirci T,Aydin MD. Mysterious effects of olfactory pathway lesions onintestinal immunodeficiency targeting Peyer&rsquo;s patches: The firstexperimental study. Med Hypotheses 2019; 125: 31-6.
32. Aydin N, Ramazanoglu L, Onen MR, et al. Rationalization of theirrational neuropathologic basis of hypothyroidism-olfactiondisorders paradox: experimental study. World Neurosurg 2017;107: 400-8.
33. Oral E, Aydin MD, Aydin N, et al. How olfaction disorderscan cause depression? The role of habenular degeneration.Neuroscience 2013; 240: 63-9.
34. Caglar O, Firinci B, Aydin MD, et al. Disruption of the networkbetween Onuf &rsquo;s nucleus and myenteric ganglia, and developingHirschsprung-like disease following spinal subarachnoidhaemorrhage: an experimental study. Int J Neurosci. 2019; 129:1076-84.
35. Caglar O, Firinci B, Aydin ME, et al. First emerging evidenceof the relationship between Onuf &rsquo;s nucleus degenerationand reduced sperm number following spinal subarachnoidhaemorrhage: Experimental study. Andrologia 2021; 53:e14030.
36. Saat&ccedil;i &Ouml;, Yılmaz NH, Zırh A, Yulug B. The therapeutic effectof deep brain stimulation on olfactory functions and clinicalscores in Parkinson&rsquo;s disease. J Clin Neurosci. 2019; 68: 55-61.
37. Cury RG, Carvalho MJ, Lasteros FJL, et al. Effects of subthalamicstimulation on olfactory function in Parkinson disease. WorldNeurosurg 2018; 114: e559-e64.
38. Kola S, Prichard DO, Bharucha AE, Hassan A. A prospectivepilot study of the effects of deep brain stimulation on olfactionand constipation in Parkinson&rsquo;s disease. Clin Neurol Neurosurg2021; 207: 106774.
39. Dafsari HS, Dos Santos Ghilardi MG, Visser-Vandewalle V,et al. Beneficial nonmotor effects of subthalamic and pallidalneurostimulation in Parkinson&rsquo;s disease. Brain Stimul 2020; 13:1697-705.
40. Fonoff ET, de Oliveira YS, Driollet S, et al. Pet findings inreversible improvement of olfactory dysfunction after STNstimulation in a Parkinson&rsquo;s disease patient. Mov Disord. 2010;25: 2466-8.
41. Khaindrava V, Salin P, Melon C, Ugrumov M, Kerkerian-Le-Goff L, Daszuta A. High frequency stimulation of thesubthalamic nucleus impacts adult neurogenesis in a rat modelof Parkinson&rsquo;s disease. Neurobiol Dis 2011; 42: 284-91.
42. Zibetti M, Torre E, Cinquepalmi A, et al. Motor and nonmotorsymptom follow-up in parkinsonian patients after deep brainstimulation of the subthalamic nucleus. Eur Neurol 2007; 58:218-23.
43. Yavasoglu NG, Comoglu SS. The effect of subthalamic deep brainstimulation on autonomic dysfunction in Parkinson&rsquo;s disease:clinical and electrophysiological evaluation. Neurol Res. 2021;43: 894-9.
Volume 5, Issue 2, 2023
Page : 153-159
_Footer